Redefining Fasciocutaneous Microanatomy: An Illustrated Review of Current Concepts and Their Clinical Correlates

Mohammad Suleman Bajwa, MBBS, MD1;2; Muhammad Omar Afzal, MBBS, FCPS1; Ahmad Hussain, MBBS; Usman Khalid Farooq, MBBS, FCPS; Muhammad Mustehsan Bashir, MBBS, FCPS, MME, PhD1; Farooq Shahzad, MBBS, FACS, FAAP1

1Department of Plastic and Reconstructive Surgery & Mayo Burn Centre, Mayo Hospital, King Edward Medical University, Punjab, Pakistan
2Department of Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, New York, USA

ABSTRACT

Emerging anatomical concepts challenge microsurgical dogma. The current anatomy of the skin and subcutaneous tissue was reviewed with the objective of challenging the existing understanding of fasciocutaneous microanatomy using an updated anatomical model. Numerical anatomical data were compiled and utilized to create an updated and scaled model, defining integumentary neuroarterial, venolymphatic, and connective tissue systems. Additionally, a second model detailing the neurovasculature of the head and neck is presented, illustrating the relations of perforator arteries. Microangiosomes, the strength of their connections, and their relation to dissection planes are described. Clinically relevant structures are outlined, along with general principles and regional variations. We explore the viability of dermal plexus flaps and their potential for engraftment through plexus-to-plexus apposition. A comparison is drawn between subdermal and deep-dermal plexi. Furthermore, the peculiarities of head and neck perfusion and lymphatic drainage are discussed. These models inform our approach to dissection planes, fluid injection depths, flap viability, neurotization, post-inflammatory hyperpigmentation, tissue engraftment, debulking, and head and neck lymphatic drainage. This illustrated review offers an updated understanding of fasciocutaneous microanatomy and how to safely utilize it.

INTRODUCTION

In the microsurgical era, the distinction between flaps and grafts has become blurred. The success of thin pure-skin flaps (1) and thick skin-fat composite grafts (2) reflects a growing command over microvascular anatomy. Nevertheless, some erroneous concepts persist that can jeopardize tissue viability and patient safety. Dermal plexus flaps are used to re-drape entire limbs (3–5), show a limited area of perfusion on perforator imaging (1), and often suffer marginal necrosis during excisional debulking (6,7). Certain grafts become vascularized within 24 hours through direct anastomoses between remnant vessels (8). These paradoxes expose the need to update our understanding of cutaneous microvasculature to better inform surgical practice.

This study aims to redefine current understanding of fasciocutaneous microanatomy by challenging prevalent concepts with an updated anatomical model. Specifically, it explores microangiosomes, compares the dermal plexi, and investigates head and neck perfusion and lymphatic drainage. The objective of this research is to enhance microsurgical techniques and improve patient outcomes by providing insight into the limitations of existing procedures across various clinical scenarios.

METHODS

To develop the primary model, we purposively retrieved articles on anatomy of each component of the integumentary system from PubMed (MEDLINE), Scopus and Google Scholar from January 1970 to April 2023 (initial search conducted through December 2022). The keywords used include ‘skin’, ‘cutaneous’, ‘integument’, ‘subcutaneous’, ‘microanatomy’, ‘microscopy’, ‘vasculature’, ‘artery’, ‘vein’, ‘lymphatic’, ‘perforator’, ‘perfusion’, ‘neuroanatomy’, ‘nerve’, ‘innervation’, ‘melanocyte’, ‘connective tissue’, ‘collagen’, ‘fascia’, ‘adipose’, and ‘fat’. Secondary retrieval was done using a citation-networking software (ResearchRabbit, Version 2.0, Human Intelligence Technologies, Incorporated) until we achieved concept saturation. We only included studies on human skin and/or subcutaneous anatomy, which observed at least 5 tissue samples. We excluded studies which were simulation-based, discussed only post-surgical imaging, reported unoriginal concepts, or those deemed not surgically relevant, as determined by consensus between two reviewers. In cases of ambiguity, the senior reviewer’s decision was solicited. Objective data and images were used to prepare a scale model. In our reporting, we emphasized the structure of microangiosomes, the strength of plexus connections, and their relation to dissection planes. In the discussion, we explore the role of the updated model in clarifying our understanding of aspects of microsurgery, specifically dissection planes, injection depths, flap viability, neurotization, post-inflammatory hyperpigmentation, tissue engraftment, debulking, and head and neck lymphatic drainage.

RESULTS

To prepare the primary model (Figure 1), our literature review comprised 22 original articles and reviews, focusing on the anatomy of connective tissue...
fat overexpress cell-death genes [14].

Microlobules receive central end-arteries and are peripherally drained along septae (Figure 1 label #33). Arterial pathology primarily affects the lobule (lobular panniculitis), and venous disease affects the septal and paraseptal areas (septal panniculitides) [12]. In degloving trauma, the shearing action severs perforators ascending to the deep fat (Figure 1 label #57) [48].

In some regions, like the thigh, there are multiple adipofascial layers [13]. In obesity, adipose expansion and fibrosis lead to the formation of more adipofascial layers, separated by pseudo-superficial fascia (thickened honeycomb fascia) (Figure 1 label #13) [49]. Deep fat predominates in abdominal obesity (Table 2).

Venolymphatic System

Till recently, it was assumed that there exist subpapillary venous, arterial, lymphatic, and nervous plexi [10,23,27]. High-resolution episcopic microscopy studies confirm the presence of a subpapillary venous plexus and the absence of an arterial one (Figure 1 label #24, 61) [21,24,25]. Relevant venous physiologic phenomena include the venoarterial reflex (venous distension prompts systemic vasconstriction), the venuloarterial reflex (venous distension prompts regional arteriolar constriction), and the Bayliss effect (venular distention prompts mural venous constriction) [50].

Pre-nodal lymphatics consist of 4 distinct types of channels (Figure 1 labels #18–22) [15]. They traverse collagen-rare planes, into which large proteins readily drain (Figure 1 label #19). Tissue edema pulls tethers that maintain lymphatic channel patency and open drainage pores. Like veins, their semilunar valves emerge in the deeper dermis (Figure 1 label #21). Lymphatics do not directly drain fat (Figure 1 label #22), hence the necessity of burn escharotomy. Veins and lymphatics are closely related [10]. Cellular plasticity, lymph node shunts, and dissection studies suggest the natural occurrence of macrovascular lymphatic/blood linkages [15,51].

In the head and neck, lymphatic drainage is complex. Collecting ducts from a single site drain to multiple different nodal basins [52,53]. These ducts travel laterally, towards the scalp and lateral face and neck [53,54]. Injury to these ducts results in prolonged edema, which requires about 3 weeks for repair [55]. The superficial and deep lymphatic system sandwich the superficial musculoaponeurotic system (SMAS) [54]. Valveless interconnections run between the two. Surgical insult to either system can result in prolonged edema [54].

Neuroarterial System

Cutaneous nerves and arteries are closely related [10,22]. Dermal sensory nerve bundles arborize like arteries (Figure 1 label #62) [25,29]. Superficial fascial and subdermal neurovascular ‘freeways’ parallel specific cutaneous nerves [56]. These vascular axes begin with arteries (e.g., descending genicular artery), distally make true anastomoses with long axial perforators (e.g., from the posterior tibial artery), and run in parallel to specific large nerves (e.g., saphenous nerve) [22,56]. These nerves are slightly apart from the arteries and can be separated. However, their inclusion in flaps increases the chances of preserving the vascular axis. Along cutaneous nerves, even choke vessels are relatively large [56].

The papillary dermis has a rich capillary supply, though no true plexus exists here [10,23]. Papillary perfusion is thermoregulated. In the reticular dermis, flow is metabolism/hypoxia-mediated [40,41].

Contrary to previous descriptions [1,18], the deep dermal plexus is distinct from the subdermal plexus (Figure 1 labels #53 and 54) [9,21,24]. It is random patterned, unlike the more axial subdermal plexus [18,27]. Its ascending vessels perfuse small ‘microangiosomes’ (see Table 1 for areas) [1]. Microangiosomes do not form any plexus, only a few insignificant anastomoses (Figure 1 labels #50–52) [21,24]. At the border of adjacent subdermal angiomes, neighboring microangiosomes have slightly larger anastomoses and territories (see Table 1) [24].

Subdermal angiomes are demarcated by ‘choke vessels.’ These are small-caliber regulatory vessels. They dilate (arteriogenesis) under the influence of vasodilators, high flow, and vascular delay [22,43]. Angiomes hardly

Subcutaneous white adipose tissue comprises the superficial/protective and deep/lubricant adipofascial systems [11]. The superficial system consists of densely packed adipocytes that are tethered between the superficial fascia and deep fat (Figure 1 label #56) [14]. Our clinical observation is that fat necrosis predominantly involves deep fat. While it is the better-perfused layer, cells in the deep

Melanocytic System

The basal layer of the epidermis houses melanocytes. These neural crest cells have a dermatomal distribution [31]. They are also found in hair bulbs, and perhaps in sebaceous glands [32]. Melanocyte density doubles in the rete ridges as compared to the inter-ridge area [33,34]. Thus, thicker grafts have exponentially more melanocytes.

Connective Tissue System

The mechanical properties of skin and its dissection planes are of surgical relevance. The epidermis (Figure 1 label #1) is of variable thickness (Table 2) [30]. The undulating dermo-epidermal interface contributes the most to skin shear-resistance [10]. This interface is flat in extremes of age, contributing to easy bruising. Additionally, aged skin exhibits dermal thinning from keratinocyte apoptosis and senescence, fewer blood vessels, and larger, albeit hypo-functional, sebaceous glands [35]. Photoaging independently reduces shear-resistance and contributes to dermal thickness changes. Photoaging affects sun-protected skin (e.g., torso) more as compared to sun-exposed skin (e.g., forearm or calf) [36]. Integumentary ligaments anchor rete ridges to deeper layers (Figure 1 label #8). These ‘retaining ligaments’ are prominent in the unaged face, and in patients with early Dupuytren’s hand contracture [11,37,38]. They transmit contractions of superficial muscles to the skin, while protecting the vessels.

There are three distinct densities of the dermal extracellular matrix [9]. The superficial (papillary) dermis (Figure 1 label #7) is collagen-and-elastin-rare. The middle (upper reticular) dermis is the thickest layer and is uniformly dense (Figure 1 label #9). The deepest 0.18 mm of the reticular dermis (Figure 1 label #11) is also rare. The dense middle dermis makes intradermal injection difficult. It reflects injected fluid back up, raising the papillary dermal plane (Figure 1 label #9). This layer may act as a barrier to the transmission of infiltrated fluids (anesthetics, fillers, etc.) across planes, whether injected intradermally or subdermally [40].

Regional variations in connective tissue lead to anisotropy in skin tension lines [41,42]. Collagen-elastin interplay accounts for skin biomechanical properties, like non-linear deformation, anisotropy, and viscoelasticity [43]. Collagen provides an excellent surface for early fibrin-mediated adherence of wound elements [45,46], and their scar sheet may enhance tissue strength [47].

Adipose Tissue

Subcutaneous white adipose tissue comprises the superficial/protective and deep/lubricant adipofascial systems [11]. The superficial system consists of densely packed adipocytes that are tethered between the superficial fascia and dermal integumentary ligaments by the honeycomb fascia (Figure 1 label #12, 13). It has a cushioning effect. The deep system is loose striated fascia, which allows planes to glide smoothly (Figure 1 label #15, 16). These systems are nototypically distinct. The superficial system serves a fat metabolism function, while the deep system is pro-inflammatory [14]. The adipofascial system lends pliability to skin-fat composite grafts [2]. Their distribution differs across the body (Table 2).

Dense aggregates of adipocytes form secondary microlobules. These receive end-arterial supply (Figure 1 label #12). Superficial fat arteries are smaller, albeit more numerous, than those in deep fat [14]. Deep fat receives additional perfusion from descending branches of deep dermal and subdermal plexi (Figure 1 label #56) [14,18]. Our clinical observation is that fat necrosis predominantly involves deep fat. While it is the better-perfused layer, cells in the deep
Figure 1. A scale representation of the human integumentary system (30:1, with a hair shaft width as a 70 µm reference). Connective tissue (1-17, colored in cyan for collagen fibers and beige for adipose): 1, epidermis; 2, dermis; 3, protective adipofascial system; 4, lubricant adipofascial system; 5, rete peg; 6, papillary dermis; 7, papillary dermis (collagen rare); 8, integumentary ligament; 9, reticular/deep-dermis (collagen-dense layer); 10, adipose tissue in dermis; 11, reticular/deep-dermis (collagen-rare layer); 12, cuboid fat; 13, honeycomb fascia; 14, superficial membranous fascia; 15, striated fascia; 16, flat fat; 17, deep membranous fascia. Lymphatics (18-22, colored in green): 18, initial lymphatic (open-ended, avascular channel); 19, pre-collector lymphatic (has valves); 20, lymphagion (channel between valves) of a collector lymphatic (has circumferential contractile cells); 21, semilunar valve; 22, pre-nodal lymphatic trunk. Veins (23-34, colored in deep blue): 23, venule; 24, subpapillary venous plexus; 25, semilunar valve (start in deep dermal layer); 26, deep dermal plexus; 27, subdermal plexus; 28, peripheral tributary; 29, interlobular septal vein; 30, suprafascial plexus; 31, superficial fascial perforator; 32, subfascial plexus; 33, venous tributaries (peripheral/septal); 34, deep fascial perforators. Special organs (35-47): 35, Meissner corpuscle; 36, Merkel disc; 37, free nerve endings; 38, sebaceous gland; 39, arrector pili muscle; 40, Ruffini ending; 41, lanceolate-ending receptors; 42, Pacinian corpuscle; 43, Krause end bulb; 44, glomus body (closely related to 42); 45, hair bulb and hair-end nerve plexus; 46, eccrine sweat gland; 47, sudomotor plexus. Arteries (48-60, colored in red): 48, terminal dermal arteries giving off papillary capillaries; 49, epineural arterial complex; 50, inter-microangiosomal anastomosis (rare); 51, intra-microangiosomal anastomosis (rare); 52, ‘central dermal’ microangiosomal artery; 53, deep dermal plexus; 54, subdermal plexus; 55, descending adipofascial artery; 56, anastomoses of the deep fatty layer; 57, deep fascial perforators; 58, septal artery; 59, nerv arteriosum; 60, vasa nervosum. Nerves (61-64, colored in yellow): 61, subpapillary neve plexus; 62, dermal nerve trunk (whose branches follow dermal arteries); 63, deep dermal plexus; 64, cutaneous nerve and anastomoses. This figure is an original creation by the first author, prepared for this publication.
cross scar lines [17,20,57].

Deep fascial perforators are consistently found within anchoring/fixed connective tissue planes, like at the modiolus. Here, perforators are protected from shear stress and have a shorter course to the skin. Perforators may be cutaneous, septocutaneous, or musculocutaneous. They respectively supply axial, fasciocutaneous, and random-pattern flaps, though there are many exceptions to this nomenclature [43]. Perforator diameter relates to tissue mobility and laxity [22]. In the face, arterial perforators are larger and closer to veins caudally compared to cranially [58].

Head and neck neuroanatomy is complex. Perforators mostly arise from the facial, superficial temporal, and supratrochlear arteries, along fascial planes [38,59]. There are true midline anastomoses in the lips [59], but choke anastomoses across the forehead [60]. Dense arterial plexi exist deep to, within, and superficial to the SMAS. The subdermal plexus is particularly rich in the 'blush regions' (malar area and anterior neck) [60]. Veins travel distant from arteries in the nasolabial area, forehead, and scalp [61]. Recent studies suggest glabellar flaps can include longer vessels (paracentral artery and central artery) and larger veins (central vein) than paramedian flaps (based on the supratrochlear artery) [62–64]. However, these central arteries may be absent in some patients. There exist communications between midfacial sensory (infraorbital) and motor (facial) nerve trunks, located around 16 mm lateral and 6 mm superior to the alar rim (Figure 2) [65]. This region may provide an alternate pathway for sensory and motor neurotization, i.e., a ‘babysitter nerve’, and should be safeguarded. Relations between facial perforators and surrounding neurovascularity are understudied compared to limbs. Figure 2 depicts the current anatomy of facial perforators and their relation to sub-SMAS neurovasculature.

Table 1. Dimensions Considered in Model Design

<table>
<thead>
<tr>
<th>Location</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin layers</td>
<td></td>
</tr>
<tr>
<td>Epidermis</td>
<td>Overall: Approximately 150.0 µm deep</td>
</tr>
<tr>
<td></td>
<td>Eyelid: 5.0–50.0 µm</td>
</tr>
<tr>
<td></td>
<td>Volar finger: 420.0–673.0 µm</td>
</tr>
<tr>
<td></td>
<td>Sole: 529.0–1377.0 µm</td>
</tr>
<tr>
<td>Dermal papillae</td>
<td>170.0 µm wide</td>
</tr>
<tr>
<td>Venous subpapillary plexus</td>
<td>300–400.0 µm deep to surface</td>
</tr>
<tr>
<td>Hair shaft</td>
<td>Approximately 70.0 µm wide</td>
</tr>
<tr>
<td>Dermis</td>
<td>2.0–5.0 mm deep</td>
</tr>
<tr>
<td>Papillary dermis (collagen-rare)</td>
<td>Up to 773.6 µm deep to dermo-epidermal junction</td>
</tr>
<tr>
<td>Reticular dermis (collagen-dense)</td>
<td>Situated between the collagen-rare layers</td>
</tr>
<tr>
<td>Reticular dermis (collagen rare)</td>
<td>Up to 171.9 µm above the dermo-hypodermal interface</td>
</tr>
<tr>
<td>Dermo-hypodermal junction*</td>
<td>2500.0–3500.0 µm deep to surface</td>
</tr>
<tr>
<td>Adipocyte</td>
<td>Up to 100.0 µm wide</td>
</tr>
<tr>
<td>Arterial system</td>
<td></td>
</tr>
<tr>
<td>Pre and post capillary vessels</td>
<td>8.0–15.0 µm</td>
</tr>
<tr>
<td>Papillary dermal vessels</td>
<td>17.0–22.0 µm</td>
</tr>
<tr>
<td>Initial (papillary) lymphatic vessel</td>
<td>60.0 µm</td>
</tr>
<tr>
<td>Adjacent measurements**</td>
<td></td>
</tr>
<tr>
<td>Arterio-arterial anastomoses*</td>
<td>17.0–40.0 µm</td>
</tr>
<tr>
<td>‘Central dermal’ microangiosomal artery*</td>
<td>29.3–89.5 µm</td>
</tr>
<tr>
<td>Dermo-hypodermal artery</td>
<td>55.4–153.3 µm</td>
</tr>
<tr>
<td>Number of microangiosomal arteries*</td>
<td>0.0–3.0</td>
</tr>
<tr>
<td>Number of arterio-arterial anastomoses*</td>
<td>0.0–4.0</td>
</tr>
<tr>
<td>Microangiosome area</td>
<td>1.6 ± 1.3 mm²</td>
</tr>
<tr>
<td>Microangiosomal overlap area</td>
<td>0.9 ± 0.9 mm²</td>
</tr>
<tr>
<td>Adipose septal artery</td>
<td>250.0–500.0 µm</td>
</tr>
<tr>
<td>Arteriole to adipose secondary microlobule</td>
<td>100.0–300.0 µm</td>
</tr>
<tr>
<td>Dermal-flap perfusion area (single pure-skin perforator)</td>
<td>29.0 ± 18.0 cm² (3.0–60.0 cm²)</td>
</tr>
<tr>
<td>Dermal-flap perfusion area (double pure-skin perforators)</td>
<td>43.0 ± 20.0 cm² (16.0–90.0 cm²)</td>
</tr>
<tr>
<td>Dermal-flap perfusion area (triple pure-skin perforators)</td>
<td>46.0 ± 33.0 cm² (23.0–90.0 cm²)</td>
</tr>
</tbody>
</table>

1The table is formulated based on references 1, 9, 11, 12, and 66.
2The measurements adjacent to each other represent values within an angiosome (on the left) and those between angiosomes (on the right). The region between subdermal angiosomes seems to feature more numerous microangiosomal anastomoses and larger microangiosomal areas.
3Measurement taken in region between neighboring subdermal angiosomes. This region appears to have wider anastomoses and broader microangiosomal areas.
4May be found at any depth within the dermis, including anastomoses between and within microangiosomes.
5Emerges from deep dermis at intervals of 1.5 mm.
6In a cuboid data volume with base area of 5.76 mm².
Table 2. Regional Variations

<table>
<thead>
<tr>
<th>Structure</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verrucous skin</td>
<td>Eyelid, knee, and elbow</td>
</tr>
<tr>
<td>Flat dermal papillae</td>
<td>Limbs, eyelids, and skin in age extremes</td>
</tr>
<tr>
<td>Dermis</td>
<td>Thick on back</td>
</tr>
<tr>
<td>Dermo-hypodermal interface</td>
<td>Well-defined in trunk</td>
</tr>
<tr>
<td>Hypodermis</td>
<td>Thick in cheek and labia majora</td>
</tr>
<tr>
<td>Bilayer fat</td>
<td>Face, abdomen, and back</td>
</tr>
<tr>
<td>Cuboid fat prevalent</td>
<td>Pressure areas: palms, posterior shoulders, back, buttocks, thighs, and soles</td>
</tr>
<tr>
<td>Flat fat prevalent</td>
<td>Accompanied by prominent anchoring fascia in skin creases, fossae, and cleavage sites</td>
</tr>
</tbody>
</table>

1 The table is formulated based on references 11 and 30.
2 Bilayered fat consists of a superficial adipofascial system (superficial cuboid fat with honeycomb fascia) and a deep adipofascial system (flat fat with striated fascia).

The special organs in the skin (Figure 1 labels #35–47) are well-reviewed by Metze et al. [16]. Glomus bodies (Figure 1 label #44) shunt deep dermal arteries into veins. They are present in distal extremities alongside Pacinian corpuscles (Figure 1 label #42). This suggests that glomular perfusion is neuroregulated [16].

DISCUSSION

This study unveils the contemporary microanatomy of the integumentary system. The ensuing sections delve into its many microsurgical implications.

Dissection Planes

Surgical planes are often collagen-rare, allowing blunt dissection. Fluid from tissue edema, fasciitis pathogens, and injections travel along these planes. Arteries traverse them, but they still require delicate handling to avoid bleeding.

The deep-dermal plane, running within the dermo-hypodermal interface, begs description. There is no clear interface, especially in distal extremities (Figure 1 label #10 and Table 2). Indeed, full-thickness skin grafts often contain elements of both layers [27,47]. Vertical vessels populate this wide region of deep dermis and subdermis [18,21,24,27]. This network can be subdivided into the deep dermal (Figure 1 label #53) and subdermal plexi (Figure 1 label #54). Separation requires meticulous fat dissection or hydrodissection through the deep dermis and subdermis [18,21,24,27]. This network can be subdivided into the deep dermal plexus [1]. Some surgeons propose that vertical perforators run between the subdermal and deep-dermal plexi [2]. However, imaging reveals these two plexi are continuous, horizontal, and lack any intervening solid membrane [9,18,24]. The vertical vessels observed are likely plexus vessels displaced by hydrodissection or descending adipofascial branches of these plexi (Figure 1 label #55).

Tissue Viability, Engraftment, and Plexus-To-Plexus Apposition

Neovascularization begins around day 3 of tissue transplant [57,67]. It is robust enough to support most fasciocutaneous flaps by the 12th postoperative day [68]. The periphery of skin flaps derives perfusion from wound bed neo-vessels [57]. Vessels grow at a rate of approximately 0.2 mm per day, continuing up to distances of 2–5 mm [41]. More intervening fat or scar can compromise flaps even years after insetting [69,71]. This often complicates fatty abdominal flaps and muscular flaps. Both flaps have barriers to neovascularization (fat and perimysium). Skin flaps undergo revascularization faster than muscle flaps [72]. Skin flaps have large exposed plexi, enabling arteriogenesis (widening of pre-existing arteries) and angiogenesis (sprouting from existing arteries) before neovascularization (formation of vessels from progenitor cells). Their different perfusion patterns contribute to their differential angiogenesis; skin flaps have an initial vasoconstrictive phase after sympathetic denervation, leading to more hypoxia-signaling, promoting angiogenesis, whereas muscle flaps are less sensitive to denervation, and hypoxia increases perfusion along the pedicle [73]. Supercharging adipose tissue with a dermal plexus flap enhances its viability [74].

Early engraftment enhances the viability of grafts and thin flaps [2,3,4,70,75]. Full-thickness skin grafts (FTSG) may receive dermal plexus perfusion from their margins. Yet, they cannot survive over a poorly perfused bed wider than 12 mm [8,76–78]. Dermal plexus flaps also have a limited zone of perfusion (Table 1) [1], and similarly necrose over poorly perfused beds [6]. Adipose tissue is slippery; engraftment technique is important for composite graft take.

Apposition of the plexi in grafts and flaps and their wound beds improves outcomes [2,79–81]. It leads to inosculation (direct anastomosis) of pre-existing vessels, facilitating engraftment. Graft success may be related to dermal vascular density, which is greater in retroauricular, scalp, thigh, and plantar dermis as compared to the cheek, groin, peri-clavicular, back, and buttock dermis [8]. In the face, extensive communication between angiosomes diminishes the importance of engraftment. Indeed, whole-face transplants and large keystone flaps can be reliably perfused on a single perforator (Figure 2) [82]. Septae between adipocytes contain vessels (Figure 1 label #13). Including the septae in composite grafts thus improves viability [2,46]. Septae are well-defined in the groin, mastoid region, and other anchoring sites (Table 2) [11].

There are different techniques for preserving plexi during dissection. Partial debridement, retaining the deepest, flimsy layer of reticular dermis, maintains the bed’s deep dermal plexus (Figure 1 label #11) [2]. To maintain the subdermal plexus in a raised flap, surgeons preserve at least 1 mm of fat during scalpel/scissor dissection [2,83], and 3–5 mm during open-tip liposuction and/or arthroscopic shaving [84,85]. During de-fatting, maintaining the honeycomb fascia helps preserve septal vessels (Figure 1 label #13) [2]. It is very difficult to completely de-fat a pure-skin perforator flap [1,49]. Defatting to less than 1 mm can insult plexi and deep dermal structures, compromising perfusion and contributing to post-inflammatory hyperpigmentation [2,86]. Preserving more than 4 mm of fat limits engraftment [2,87]. The suprafascial plexus is easily maintained by dissecting fat off it [79–81]. In patients with thick fascia, as seen in chronic lymphedema, deep subfascial plexi are made accessible by fascial thinning to 1 mm [75].

Neurotization

Skin neurotization causes vasospasm [72]. Skin sympathetic denervation en-
Figure 2. Facial neurovasculature with perforators mapped. Perforators (green) originate where dominant vessels traverse fixed connective tissue planes (purple). Perforators supply the superficial musculoaponeurotic system (SMAS) and the supra-SMAS fat compartments and skin. They are longer in the more mobile lateral face, and shorter and more clustered medially. Perforators often enter SMAS alongside nerves. Veins generally travel apart from arteries in scalp, forehead, and nasolabial regions. The genu (knee) of the supratrochlear artery is shown, as it emerges from corrugator supercili. The depiction shows the communication between the zygomatic branch of the facial nerve and the infraorbital nerve, which is located superolateral to the alar rim. Dominant arteries (left to right) include occipital artery, posterior auricular artery, superficial temporal artery, frontal branch of superficial temporal artery, supratrochlear artery, facial artery, and mental artery. Some perforators also arise from the transverse facial artery, zygomatico-orbital artery, zygomaticotemporal artery, zygomaticofacial artery, and infraorbital artery. Fascial septae of midface (left to right): lateral cheek septum, medial cheek septum, middle cheek septum, and nasolabial septum. The orbicularis membrane is superior to them. Forehead vessels (left to right): horizontal limb of frontal branch of superficial temporal artery, ascending branches of supraorbital artery (emerging from below supraorbital ligament), supratrochlear artery, paracentral artery and angular artery, central artery and dorsal nasal artery, and central vein. This figure is an original creation by the first author, prepared for this publication.
hances perfusion after a 24–48-hour vasocclusive phase [73]. This may support cutaneous flap perfusion. In contrast, muscle flap perfusion is regulated by metabolic demands [72].

Neurotized tissue can achieve near-normal skin sensitivity [47,88–91]. Flap debulking reduces the distance between skin and deeper nerves, improving sensory outcomes [79–81,91,92]. Though a subapillary nerve plexus may exist, the majority of sensory innervation comes from the dermal nerve trees that ascend with microangiosomes to arteries [24,29]. Thus, hinged grafts/deep dermal plexus flaps are unlikely to be neurotized except through their bed.

Post-inflammation Hyperpigmentation

Post-inflammation hyperpigmentation (PIH) is a morbid complication of free tissue transfers. It is mediated by dermal fibroblasts and sebocytes, which are abundant in the dense reticular dermis (Figure 1 label #9,38) [93–96]. Cells are activated by ischemia, desiccation, and inflammation, resulting from mechanical trauma, inflammatory dermatoses, photodamage, and endogenous metabolic stresses [96–99]. This is the rationale for prophylactically prescribing oral antioxidants (vitamins C and E) and topical moisturizers [47]. Epithelial pigmentation is brown and fades over months. Dermal pigmentation is grey-brown and persists, particularly in dark-skinned people [100]. The ‘melanocyte-migration hypothesis’ for PIH states that inflammatory signals damage the basement membrane, precipitating melanocyte incontinence into the upper dermis [101,102]. This is readily observed in ‘pie-crusted’ skin grafts, which retain dyschromic stab-site scars [4]. Recent evidence challenges this, suggesting PIH results from activation of dormant subdermal melanoblasts [103].

Current microanatomical concepts and clinical observations reveal the complex etiopathogenesis of chronic PIH. While further analysis is necessary, this preliminary review offers the following insights into chronic PIH associated with split-thickness skin grafts (STSG), FTSG, skin-fat composite grafts (SFCG), and very thin flaps:

- Grafts retain features of their donor site; groin grafts have been reported to succumb to localized and systemic acanthosis nigricans [104,105]. Forearm STSG and FTSG are both excellent for covering defects from harvesting radial forearm free flaps [106,107]. When used to cover pericoronal defects, distant FTSG (supravacular or inner brachial) were more prone to hypopigmentation than regional FTSG (eyelid or post-auricular) [108].
- Graft SFCG may be more prone to PIH, as compared to other sites [2,45]. Groin SFCG with 3 or more mm of fat are predisposed to ischemia and chronic PIH independent of, or accompanied by, epithelial necrosis [2]. Groin FTSG may be more prone [109], or similarly prone to PIH as compared to other sites [110,111]. Groin STSG may be similarly prone to PIH, as compared to other sites [112]. STSG from hair-bearing skin is susceptible to PIH [94,113,114]. Thicker STSG contain many more melanocytes and mediatory cells than thinner STSG [33,34].
- STSG from hair-bearing skin seems less susceptible to PIH than FTSG [83,109–111]. This has been objectively confirmed by colorimetric assessment [83,111]. This is supported by the mediatory role of dermal fibroblasts and sebocytes [93–96]. However, some studies suggest STSG and FTSG from hair-bearing skin have similar PIH rates [115–117].
- Hyperpigmentation is proportional to the degree of donor-site/recipient-site dermal insult, including ischemic insult [97]. When thigh STSG was placed on partially debrided wounds, it was complicated by more hyperpigmentation than thicker back STSG placed on fully debrided wounds [118]. Debridration and partial debridement of scars also cause chronic PIH in subsequently grafted skin [118,119]. Flap debulking by liposuction with arthroscopic shaving is complicated by PIH [86]. Avoiding ischemia by preserving perforators and subdermal plexi during dissection, and using scalps instead of scissors for removing fat, makes thin flaps less susceptible to PIH and other complications typically associated with grafts [87,120].
- Glabrous grafts (plantar FTSG, thick STSG, and dermal grafts) do not suffer hyperpigmentation as they have very few melanocytes [33]. Thus, they match well with palmar skin [88,113,121–123]. The thick collagen at this site also reduces contracture recurrence [114,121–123].
- Graft orientation is unlikely to be related to PIH [124]. PIH is occasionally useful to enhance skin pigmentation, such as during flap debulking, although the extent of pigmentation remains unpredictable [79,125]. Exploring the potential of dermal substitutes to mitigate graft-associated PIH could be pursued, particularly in dark-skinned populations [126].

Debulking

The ultimate aim of debulking surgery is to address both cosmetic concerns (contour, scarring, pigmentation, hirsutism) and functional issues (pliability, sensitivity, grip, skin quality, hindrance to wearing clothes/shoes, speech, swallowing, etc.) in a single stage. Radical debulking results in thin dermal-plexus flaps, which is suitable for tasks like degloved wound coverage, lymphedema debulking, and thick flap revision [3,4,75,127]. Excisional debulking and liposuction are common techniques used for debulking. Other techniques include liposuction with arthroscopic shaving, intricate tissue rearrangement, laser procedures, and coverage with regionally expanded tissue [127]. Among these options, liposuction is the least traumatic for the wound bed. However, debulking can be uneven and often requires multiple stages, and a layer of fat must be retained to control bleeding. Fibrosed fat resulting from inflammation or irradiation is challenging to remove using conventional suction methods. For this purpose, open-tip liposuction and arthroscopic shaving are effective, although they come with the risk of pedicle injury [85,127,128]. Liposuction in combination with circumferential tissue rearrangement can be employed for debulking turnover flaps [129,130].

Debulked flaps are usually perfused by their pedicles and the vessels in the wound bed [57,69,131]. The revascularization of the flap involves early proximal flap arteriogenesis and late distal flap angiogenesis [69]. Often, wound bed angiogenesis alone may prove inadequate [68]. To enhance early perfusion from the surrounding skin, the design may incorporate beveled or de-epithelialized wound margins. This design promotes the alignment of skin structures, facilitating insolation between the remaining vessels of the deep dermal and subdermal plexi [45–47,132].

Head & Neck Melanoma Metastasis

Head and neck melanomas have a 22% higher mortality compared to other regions, suggesting regional differences in anatomy and melanoma behavior [133]. Lymphatics are concentrated in the scalp and lateral neck. Node biopsies in these regions have a higher detection rate than those of the face and ear [134]. However, detection by lymphoscintigraphy and sentinel lymph node biopsy shows poor efficiency in this region compared to others [135]. Low node positivity is a characteristic specific to melanomas with a diameter of >2.0 mm [52,136]. These findings suggest that large head and neck melanomas also metastasize hematogenously [52,136]. Considering the low prognostic value of sentinel node dissection, early surveillance using 3D SPECT/CT (three-dimensional single photon emission computed tomography/computed tomography) or empirical adjuvant therapy might be considered in the future [52,136]. The challenges of operating in this region could impact outcomes.

Injection Depth

The size of injected particles influences cohesivity, fluency, and degradation time. This guides decisions about appropriate injection site and depth [137]. The different densities of dermal collagen layers also impact fluid flow [9]. The thick middle dermis is dense and reflective, dividing fluids injected above and below it.

Superficial dermal injection is performed at angles up to 12 degrees. It requires little pressure, readily forming a wheal and can be confirmed by visualizing the needle outline through ‘tenting’ [138]. It is useful for hydrodissection before partial debridement [39], or for superficial hyperperfusion using epinephrine-local anesthesia for hair transplant, as per our experience. To fill small wrinkles, less-cohesive fillers (e.g., Belotero hyaluronic acid) are injected in this plane, as they are moldable and spread evenly [139]. Microfat grafts are also injected into the superficial dermis by injecting while withdrawing the
Resolving Surgical ‘Paradoxes’

Reviewing microanatomy clarifies seemingly conflicting surgical observations. Engrafting dermal plexus grafts and flaps and improving marginal perfusion through the alignment of beveled dermal surfaces may enhance tissue viability and patient outcomes.

Regarding dermal plexus flaps, which are mostly free-fat, the deep dermal plexus supplies up to about 12 mm from the flap base [1,8,76–78]. Consequently, large dermal plexus flaps are predominantly perfused through engraftment [3–5]. Poor engraftment compromises debulked dermal plexus flaps [6,7]. Treating these flaps as hinged grafts, such as when redraping limbs, proves to be a successful approach [3–5].

Aligning vessels of similar sizes leads to early anastomoses (inosculation). This principle is exploited in plexus-to-plexus apposition techniques, in which plexi from donor and recipient site tissues are approximated. Inosculation is also promoted by increasing the area of marginal plexus-to-plexus apposition, as accomplished in beveled-margined grafts and flaps [45–47,132]. This latter technique is particularly effective in composite grafts from retroauricular skin, as this skin receives predominantly marginal perfusion, and thus, possesses well-developed deep dermal and subdermal plexi [8]. The ability to survive over poorly perfused beds and to be revascularized by inosculation within 24 hours blurs the distinction between beveled-margin retroauricular composite grafts and free flaps. This holds especially true considering both undergo an early vasoconstrictive phase due to sympathetic denervation [73].

CONCLUSION

Microanatomical concepts must inform surgical practice. Understanding dissecting planes helps preserve vascular plexi and ensure tissue viability. The relationships between perforators, angiosomes, and surrounding neurovascularity guide flap design. Understanding the limits of microangiosomes and the deep dermal plexus, as well as the absence of the superficial dermal plexus, underscores the significance of engrafting thin primary and debulked flaps. Apposition of plexi within donor and recipient tissues can enhance tissue viability and neurotization. Chronic post-inflammatory hyperpigmentation after free flap reconstruction for the lower leg.

REFERENCES

8. Tomita K, Hosokawa K, Yano K, Takada A, Kubo T, Kikuchi M. Dermal vascular...

104. Tansatit T, Phanchart P, Chinnawong D, Apinuntrum P, Phetudom T, Sahraoui YM. A cadaveric study of the communication patterns between the buccal trunks of the
218.

429.

67. Clemmensen T, Ronhovde DA. Restoration of the blood-supply to human skin auto-

68. Yoon AP, Jones NF. Critical time for neovascularization/angiogenesis to allow free flap
recovery after delayed postoperative anastomotic compromise without surgical inter-

69. Kumar K, Jaffe W, London NJ, Varna SK. Free flap neovascularization: Myth or reality?

70. McGuire PG, Howdeshell TR. The importance of engraftment in flap revasculariza-

71. Longo B, Laporta R, Sorotos M, Atzeni M, Santaneli di Pompeo F. Complete deep flap
survival following pedicle resection, 4 years after its transfer. Clinical evidence of au-

72. Nasir S, Yabakal B, Altuntas S, Aydin MA. Hemodynamic differences in blood flow

497.

reduce fat necrosis after breast-conserving surgery using an inflammatory adipo-

75. Chen SH, Cem Yildirim ME, Mousavi SA, Chen HC. Long-term functional outcomes
upon application of split-thickness skin graft around major joints in HHC (Hung-

76. Rees TD, Ballantyne DLJ, Hawthorne GA, Nathan A. Effects of static sheet implants

77. Gingrass P, Grabl AE, Gingrass RP. Skin graft survival on avascular defects. Plast Recon-

78. Wright JK, Brawer MK. Survival of full-thickness skin grafts over avascular defects. Plast

79. Lin TS, Jeng SF, Chang YC. Resurfacing with full-thickness skin graft after debulking

80. Lin TS. One-stage debulking procedure after flap reconstruction for degloving injury

81. Jaramillo Del Rio AE, Hsieh MH, Kuo PJ, Lin TS. Optimal result of one-stage sec-
dinary debulking procedure after flap reconstruction of the ankle. Ann Plast Surg

82. Gunnarsson GL, Jackson IT, Thomesen JB. Freestyle facial perforator flaps—a safe re-
315–318.

84. Ibrahim AE, Janion H, Raad M. Liposuction contouring after head and neck free flap

85. Lai HT, Kuo PJ, Chang CH, Lai CS, Lin SD, Kuo YR. Combined use of liposuction and
arthroscopic shaving for delayed debulking of free flaps in head and neck reconstruc-

86. Ooi A, Wong CH, Ong YS. Combined use of liposuction and arthroscopic shaver in low
arthroscopic shaving for delayed debulking of free flaps in head and neck reconstruc-
tion: Confirmation by laser speckle perfusion imaging. J Reconstr Microsurg 2022;

skin grafts in periorbital reconstructions: Long-term outcomes. Ophthalmic Plast Recon-

89. Deunk J, Nicolai JP, Hamborg SM. Long-term results of syndactyly correction: Full-

90. Ellod J, Moelnder D, Schied C, Mohr C, Neuhaus K. Comparative analysis of func-
tional and aesthetic outcomes of retroauricular full-thickness versus plantar glabrous

91. Eryilmaz T, Telliovu AG, Ozakpinar HR, et al. Correction of hyperpigmented palmar
grafts with full-thickness skin grafts from the lateral aspect of the foot. J Plast Reconstr

92. Moon SH, Lee SY, Jung SN, et al. Use of split thickness plantar skin grafts in the treat-
ment of hyperpigmented skin-grafted fingers and palms in previously burned pa-

93. Marques RR, Coltro PS, Almeida JBL, Castro JCD, Junior JAF. Treating complex pal-
mar plantar wounds using a bilaminar “trapdoor” technique: A case series. J Bone

94. Chan QE, Barzi F, Harvey JG, Holland AJ. Functional and cosmetic outcome of full-
versus split-thickness skin grafts in pediatric palmar surface burns: A prospective,

95. Al-Qattan MM. Campfire burns of the palms in crawling infants in saudi arabia: Re-

96. Schwanholt C, Greenhalgh DG, Warden GD. A comparison of full-thickness versus
split-thickness autografts for the coverage of deep palm burns in the very young pe-

dermal burn of the dorsum of the hand: Partial-thickness debridement followed by

98. Harmon CB, Skinner DP. Dermabrasion. In: Cosmetic Dermatology: Products and Proce-
dures. 3rd ed. Edited by Draelos ZD. John Wiley & Sons Ltd 2022:547–554.

dissection for elevation of pure skin perforator flaps and superthin flaps: The der-
mis as a landmark for the most superficial dissection plane. Plast Reconstr Surg

100. Sohail M, Hussain M, Bashir MM, et al. Outcome of coverage of post burn palmar
hand contractures with glabrous intermediate-thickness plantar (ITP) skin graft. Ann

International Microsurgery Journal. 2023;71(1):2

DOI: 10.24983/scitemed.imj.2023.00174

10 of 11
REVIEW

