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Introduction  

The essence of biochiralityI is widely recognized, appreciated and ex-

ploited. Partially it is illustrated by chronologically sequencing citations 

from the publications in the diverse branches of the science. "Almost 

every biochemical process occurring in the cell of all living organisms is 

based on some specific, stereoselective interaction between reacting mol-

ecules” [1]. "From a chemical point of view, proteins are by far the most 

structurally complex and functionally sophisticated molecules known” [2]. 

"Stereospecificity is one of the hallmarks of enzyme catalysis” [3]. "One of 

the most dramatic aspects of biological systems involving proton transfer 

is their high stereoselectivity” [4]. "Chirality plays a fundamental role in 

the activity of biological molecules and broad classes of chemical reac-

tions” [5]. "Controlled mirror symmetry breaking arising from chemical 

and physical origin is currently one of the hottest issues in the field of 

supramolecular chirality” [6]. "Chiral recognition is the fundamental prop-

erty of many biological molecules” [7]. "Chiral compounds…pose the sig-

nificant impact on the understanding of the origin of life and all processes 

that occur in living organisms” [7]. "Cell chirality may be a general prop-

erty of eukaryotic cells” [8]. "Chirality is one of the ubiquitous phenomena 

in biological systems” [9]. "Consistent left-right (LR) asymmetry is a funda-

mental aspect of the bodyplan across phyla” [10]. "Among the most read-

ily observed topological features in natural structures are chirality, hierar-

chy, and hierarchy of chirality” [11]. "Chirality is a fundamental property 

and vital to chemistry, biology, physics and materials science" [12]. In 

most general sense, molecular chirality is appreciated as the universal 

“force of nature” [13]. "How chirality at one length scale can be translated 

to asymmetry at a different scale is largely not well understood” [12]. 

In such situation, it is reasonable to view the enormous amount of 

facts of biochirality as the hierarchical system unifying by the common 

underlying mechanism.  

 

Stereospecific Phenomena  

Chirality 

The chiral, spiral and helical structures and shapes are seen in the mor-

phology of many physical [15] and biological [16] systems including the 

spiraling of plants [17] the shape of the mammalian cochlea [18], and the 

shape of human brain [8]. In any organism, the geometrical patterns are 

seen in a position of the heart and visceral organs [10], and in the spatial 

distribution of brain activity [19]. Left-right asymmetry recognized as a 

fundamental property of the brain, evident at all levels of an organization, 

including molecular, cellular, morphological, and functional [20-23]. At 

the same time, it is well known that the majority of biologically active mol-

ecules such as amino acids [22], proteins [23], carbohydrates,II and phos-

pholipids [24] are chiral. The ability of proteins to fold into the chiral sec-
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Biomolecules are the products of an evolutionary history. As a result, the phenomenon of molecular chirality is relevant to protein folding, neuronal 

proliferation, brain functional laterality, as well as the nature of cognition, consciousness, behavior, and psychiatry. Molecular chirality, discovered 

by Faraday (1846) and Pasteur (1848), helped to reveal that the biochemistry of the living beings has a prevalent chirality. At present, the essence of 

biochirality is widely recognized, appreciated, and exploited in neuroscience and psychology. In a more general sense, molecular chirality is recog-

nized as the universal “Force of Nature.” From the formal geometrical perspective, a chain of chiral bifurcations is the chain of the chirality transfer 

between the molecular micro-, meso-, and macro-scales. Consequently, the symmetry is considered as a critical issue in the brain information 

processing. The fundamental laws of information theory reflect the relationship between entropy, symmetry and information. At the cellular level, 

signal transduction mechanism involves the wave of chiral transformations in the process of protein-protein, protein-phospholipids, and protein-

DNA interactions. The symmetry dynamics at the molecular and cellular levels are considered in connection to the laterality of cognitive functions. 

The abnormal symmetry dynamics viewed as a primary reason of an aggregation of mis-folded proteins in the neurodegenerative diseases and 

psychiatric disorders. The molecular basis of the “symmetry evolution” in the biological systems is a question of interest.  In this short review, we 

briefly summarize advances in the broad field of biochirality connecting two poles of the phenomena: the atomic orbitals and the brain’s cognitive 

function. Analysis of current results allows introducing the new generation of entangled biomarkers ranging from the molecular chirality to laterality 

of cognitive and executive functions. 
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I We assume that the readers are familiar with the basic concept of the chirality in 

relation to the theory of symmetry groups, quantum electrodynamics, and stereo-

chemistry [14].  

II Carbohydrates contain multiple stereocenters, allowing many forms of isomers in-

cluding enantiomers, diastereoisomers, and epimers. 
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ondary, tertiary, and higher-ordered structures assumed to be responsi-

ble for their prominent role in the chirality transformation events. The 

members of protein family known for chirality related functions include 

enzymesIII [25], cytoskeleton molecular complex [26], amylogenic proteins 

[27,28], trans-membrane proteins – ligand complex [29], drugsIV [30,31], 

and antibioticsV [32,33]. For the purpose of our review we will restrict our 

attention mostly to the proteins and phospholipids.  

 

Chirality Prevalence (Amino Acids, Sugars, Phospholipids, Water) 

Most of the bio-compounds have prevalent chirality (phenomenon of ho-

mochirality).VI  

AMINO ACIDS/PROTEINS. Among more than 700 naturally occurring 

amino acids only 20 are involved in the proteins synthesize. All of the al-

pha-amino acids are chiral (exept glicine). The essential chiral amino acids 

are L-configurationsVII (“left-handed”). The amino acids stereo-chemistry 

is the major determinant of protein chirality. It is meaningful that the spa-

tial configuration of amino acids in the organic world, as a rule, is gov-

erned by enzymes (i.e. proteins) [25]. The evolution known plays a pivotal 

role in the mechanism of protein folding. Chiral proteins, as the principal 

constituents of neuronal cells, provide molecular machinery for the lat-

eralized brain cognitive functions. 

SUGARS. The sugars are D-configurations (“right-handed”).  

PHOSPHOLIPIDS. The majority of the membrane phospholipidsVIII is 

right-handed, but in the archaea (single-celled organisms) membrane 

they are left-handed [24,34]. Furthermore, the membrane phospholipids 

are right-handed [24,34] but in an archaea (single-celled organism)IX 

membrane, they are left-handed. 

WATER. The water molecules (H2O) as the main constituent of the liv-

ing organism are in the scope of our consideration. In a homogeneous, 

achiral environment, the H2O molecules possess neither a chiral center 

nor a helical conformation that can cause spontaneous chirality effects. 

Accordingly, many assume (at first glance) that water falls apart from phe-

nomenon bio-chirality. However, this view was challenged by studies that 

devote more close attention to the dynamics of water structure in the chi-

ral environment (proteins, phospholipids, polysaccharides) and dynamics 

of chirality. In the variety of the “inhomogeneous” situations, water mole-

cules dynamically participate in chirality-related effects. Among such con-

ditions, we can point on the aggregation of water molecules into clusters 

[38], interaction with magnetic bio-proteins [39], contact with the 

solid/gel/liquid surface [40], interaction with the chiral solutes [41,42], 

and dehydration synthesis of proteins (via covalent bonds of amino-acids). 

In particular, it was shown that structured water exhibits a chirality 

adapted from DNA [43]. The presence of hydrophobic, hydrophilic, and 

intermediate groups in the amino acids and phospholipids contributes to 

the variety pathways of spatial arrangement. The body of accumulated 

evidence (despite the variety of distinct pathways) suggests some com-

mon causal agent in the chain of events from the molecular chirality to 

the origin of body/brain morphology and function. This "universal agent" 

is the spatial relationships between the objects linked to the fundamental 

geometrical patterns of space and force fields. 

Biological Evolution as a Chain of Chiral Bifurcations  

The pathway of life can be perceived as an “increasing chemical and phys-

ical complexity” [44,45]. In a more particular sense, the biological evolu-

tion considered as the chain of chiral bifurcations [46].  

The symmetry effects propagate from the level of molecular spatial 

transformations, intracellular /cross-membrane molecular transport, cell 

motility, to the higher hierarchical level of the spatial organization such as 

the cell proliferation [47], immune defense, environmental chemistry [49], 

motor behavior, brain cognitive functions, human psychology [50], psy-

chiatry [48,51-53]. The symmetry effects play a critical role in food prepa-

ration [54,55], pharmaceutical industry [56,57], design of molecular de-

vices (biosensors and information processing units. Symmetry is consid-

ered the critical issue in the theory of information processing and the de-

sign of artificial intellectX [58]. The hierarchy of biological structural organ-

ization arms an organism with the abilities of adequate response to envi-

ronmental challenges of differential time-space ranks. 

 

Origin of Biological Homochirality 

The homochirality is usually associated with bio-molecular objects (dis-

tinct from non-biological objects). There is an objective reason for this 

specificity. The biological homochirality known to be essential for the mo-

lecular recognition, protein replication, post-translational modification, 

and degradation processes. 

The origin of homochirality in biology is the subject of much debate. 

The emotional view on bio-chirality is frequently associated with an ex-

pression such as a symmetry breaking,XI enigma, puzzle, or mystery. More 

rational scientific approaches exhibit some degree of uncertainty, but al-

ways are ready to move forward along with the newly-coming objective 

evidence. After works of Prelog, the discussion of an origin and mainte-

nance of homochirality was shifted from the intuitive, emotional domain 

to the ground of scientific facts [59]. The cumulative advance in chiral 

physics, chemistry, and mathematics sheds light on the phenomenon of 

chirality in general and on biological homochirality in particular. Several 

decades ago Frank developed the mathematical modelXII for the sponta-

neous autocatalytic reaction as the mechanism for the evolution of ho-

mochirality [60,61]. Recently it was shown that the origin of molecular ho-

mochirality could be attributed to the non-equilibrium state of biological 

systems. The Vester-Ulbricht hypothesis, based on the interaction of the 

left-handed electrons (present in beta-radiation) with biological materials 

which preferentially destroyed one of the two enantiomer, was the first 

step in the right direction [62,63]. This hypothesis was successfully tested 

experimentally [64]. The sensitivity of molecular chirality to external de-

terminants becomes one of the most productive ideas. The classic exper-

iment of Viedma reveals that the bulk and dispersed solid state crystals 

show different dynamics of solid-liquid phase transition, which, under 

certain conditions, can be utilized to achieve an enantiomeric preference 

[65]. The following studies of the chirality dynamics in the solid-liquid 

phase system leads to several models presumably providing the mecha-

nism implicating for the origin of biochirality. Among them is the model 

based on the different solubility of homochiral and heterochiral crystals 

[66] and “chiral amnesia” model [67,68]. The review of current hypothe-

sizes on the biological homochirality in connection with the recent discov-

ery of the interstellar chiral molecule can be found in multiple sources 

[10,44,69-71]. The new finding reveals the fundamental significance of the 

symmetry transfer (1) and symmetry-associated phase transitions (2) in 

resolving the origin of biological homochirality [44,70,72]. Among them 

are the chiral recognition/selection during the self-assembly of protein-

mimic macro-anions [73], chiral recognition in the transmitter-receptor 

interactions [74], the chirality-induced conformation of the cell mem-

brane lipid raftsXIII [75,76], and the phase-transfer chiral catalysisXIV [77]. 

The chiral catalysis is productively utilized for symmetry-asymmetry 

 

III The enzymes determine the crystallization of chiral amino acids [25] and the "handedness" (chirality) of the proteins during catalytic synthesis.  
IV The enantiomers of a drug, as a rule, are differing in potency, toxicity, and behavior in biological systems. 
V The advance in enantio-separation of the antibiotics reveals the significance of chirality in their biological activity [32,33].  
VI Phospholipids and cholesterol both contain chiral carbon atoms and could themselves mediate stereoselective effects [35].  
VII Brain tightly regulates the balance between the levels of right- and left-handed amino acids for proper structure of functional proteins [22,36,37].   
VIII It is essential to know that homochirality is always relative (not absolute). There are many examples in nature where polypeptide topologies use both: L- and D-amino acids 

[36,37]  
IX Archaea are classified as microbes (single-celled prokaryotes). 
X It is notable that the design of an intelligent human-made sensing system is based on the discrimination of the object chirality and the use of chiral shape-defined polymers 

such as the dynamic helical polymers [58]. 
XI At the molecular level, the term “symmetry breaking” refers to the imbalance between two enantiomers. 
XII The main idea is that a substance acts as a catalyst in its own self-production and at the same time acts to suppress synthesis of its enantiomer. 
XIII It has been suggested that the chiral nature of cholesterol plays a role in the process of the bud formation [85]. 
XIV The variety of intracellular chemical reactions is mediated by seospecific enzymes. Many catalytic mechanisms require stereospecific deprotonation and reprotonation steps 

[77]. The L-amino acid active center is the primary determinant of catalytic activity. Thus, L-amino acid actively transfer chirality to the stereospecific enzyme activities [77]. 
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transformations in biochemistry [78]. The phenomenon of chirality is 

common to all aspects of animal life and body/brain morphology, includ-

ing the internal organs, the sensory systems, the central nervous system, 

and behavior. In particular, it pertains to sensory perception [79], motor-

behavior [80], and food consumption [54]. All of the arguments related to 

the origin of the biological homochirality, including terrestrial [44] and ex-

traterrestrial [81,82] are based on the common and experimentally 

proved effects. The sensitivity of chiral molecules to the internal, external, 

and mutual (internal-external) physical (objective) parameters [83]. While 

you can find discussions of the many particular local physical parameters, 

in the majority of current reviews, you will almost never find discussions 

about of the global parameters, such as the chirality of space-time evident 

in the physical systems [83,84]. 

 

Transformation of Bio-Chirality  

Symmetry transformation is traditionally considered to be the spontane-

ous processes accompanying all of the molecular interactions (phase sep-

aration and phase transition), including symmetry breaking and molecu-

lar folding in relation to information minimization or symmetry maximi-

zation [86]. The symmetry dynamics at the molecular level are frequently 

considered to be the mechanism responsible for the laterality of cognitive 

functions. Thus, the laterality and hemispheric asymmetry should be re-

garded as the indispensable attributes of the brain. The molecular basis 

of the symmetry evolution in biological systems is the question of interest. 

Current evidence suggests that integration of the internal and external 

determinants [84], as well as global and local signaling pathways, is nec-

essary for orienting the diverse levels of structure with respect to the 

body/brain axes [87-89]. In particular, the integration is evident in the hi-

erarchical chirality transformation accompanying the planar cell polarityXV 

in the epithelium, sensory organs [90],XVI and the brain morphology [89].   

 

Dynamic Organic Reactions 

The spatial interpretation of molecular structures was advanced (1874) by 

the concepts of the tetrahedral orientation of carbon's four bonds by 

Van’t Hoff and optical isomerism by Le Bel [91,92]. These ideas, in turn, 

gave rise to the stereochemistry of chiral stereoisomers. It was realized 

that the spatial orientation of different functional groups governs the pat-

terns of specificity in chemical reactivity [93]. The interaction between the 

chiral and achiral components was widely studied in the biological organic 

reactions. The dynamics of organic reactions (in particular those that take 

place within the spatially ordered environment of an enzyme protein in-

teraction) exhibit stereoselectivity and stereospecificity. The excellent re-

view of the stereo-dynamic of chiral objects, including natural molecular 

structures and artificial molecular devices, can be found in [94]. It is nota-

ble, that both the stereoselectivity and stereospecificity are based on the 

recognition of the symmetry-related characters (such as polarity, chirality, 

and helicity). Thus, a conclusion such as “chiral recognition is the funda-

mental property of many biological molecules” is not surprising [7]. 

 

Diversity of Stereospecific Phenomena 

The diversity of stereospecific (chiral) phenomena was observed in mo-

lecular structures including chirality recognition/sensing [95,96], chirality 

transfer [97], chirality/helicity induction [98-101], chirality amplification 

[102-104], chirality breaking [61,105], chirality conflict [106,107], helicity 

inversion [108-110], and chiral phase transitionsXVII [111-114,116]. Pro-

gress in the studies of molecular chirality transformation is helpful in re-

solving three questions. First, what kind of determinants can provide a 

favor in the production of one enantiomer over the other? Second, what 

is the mechanism of intermolecular propagation and preservation of chi-

rality? And third, what is the mechanism of chirality propagation from the 

molecular level to a higher degree of biological organization? 

 

Chiral Phase Transitions in Relation to Chirality Transfer 

Physical System 

Among the variety of the topological phase transitions [120-123] several 

sub-categories, including the order–disorder [118], chirality-related [119] 

and geometry-induced [120,123] transitions, were discovered. In con-

densed matter physics, phase transitions exhibit sensitivity to external 

physical parameters (pressure, fields, electro-magnetic radiation, soni-

cation,XVIII and doping). The systematic study of these phenomena has re-

vealed a new class of phase transitions, called “quantum phase transition 

(QFT)”. Spontaneous QFTs take place at the mesoscopic level at zero tem-

perature and are driven by the quantum fluctuationsXIX (according to Hei-

senberg's uncertainty principle). For the two above facts, the sensitivity to 

external physical parameters and the concept of the spontaneous phase 

transitions are of great importance.  

 

Biological Systems 

In relation to the biological systems, the chirality of the sub-cellular struc-

tures (such as hair bundles) was observed in auditory and vestibular sen-

sory neurons of vertebrates [87,118]. The phase transitions are the com-

mon effects, observed in the chiral molecules with pyramidal atomic cen-

ters such carbon and nitrogen. The frequency of a pyramidal inversion 

(tunnel quantum-mechanical effect) depends on the value of the energy 

barrier and set of external physicochemical factors. Chirality transfer 

from molecular to morphological level is observable in a diversity of phys-

ical objects as well as biochemical and synthetic materials [124,125]. The 

hierarchical propagation of chirality was found between the objects of dif-

ferent size, shape, and dimensionality [126]. The chirality breaking in the 

nonequilibrium systems (Bloch walls) was studied in magnetic materials 

[127]. Recent progress in the development the concept of “active fluids” 

reveals the chiral behavior of a class of nonequilibrium systems, which 

include bacterial suspensions of a bacteria, cytoskeleton proteins, and bi-

ological tissues. Even relatively simple combination of chiral and achiral 

stresses, leads to an “unprecedented range of complex motilities, includ-

ing oscillatory swimming, helical swimming, and run-and-tumble motion” 

[128]. 

 

Chirality Transfer  

Variety of Spatially Related Events 

Among the variety of spatially related events, the phase transitions and 

the symmetry transformations are known as the most closely associated. 

We will focus mostly on the phenomena of the chirality transfer. The chi-

rality transfer from the molecular to morphological scales was docu-

mented in nano-materials [124] and polymers [125]. The studies of the 

plant's growth reveal the “hierarchy of chirality” which transfers from the 

molecular (lower) levels to the macro-morphological (higher) level [130]. 

In our review, we explore what is currently known about how the molec-

ular chirality is transformed into to the laterality of cognitive functions. 

 

Sensitivity of Chirality Transfer to Internal, External, Local and Global Con-

ditions 

Symmetry transformation arising from chemical and physical origin is one 

of the hottest issues in the field of molecular chirality [5-8]. Before the 

further consideration it is essential to emphasize that hypothesis about 

the distinction between internal and external determinates in the living 

organism being very productive could become irrational in the form of an 

absolute opposition. The most convincing example of the link between 

external and internal factors is the function of a digestive system, which 

permanently transforms the external factors into the very internal. Pas-

teur (1861-1887) was the first who introduced an idea regarding an inter-

action between the polar physical fields (electrical, magnetic, electromag-

netic, gravitational/mechanical) with atomic/molecular chirality [131]. He 

 

 

 
 

 

 

XV Planar cell polarity (PCP) “is driven by multiple global cues, including gradients of gene expression, gradients of secreted ligands, and anisotropic tissue strain” [117].  
XVI The chirality of the sub-cellular structures (such as hair bundles) was observed in auditory and vestibular sensory neurons of vertebrates [87,118]. 
XVII The formation of supramolecular helicity is associated with the occurrence of new thermodynamic phases. The chirality related effects in thermotropic and lyotropic liquid 

crystals were demonstrated through the ferroelectricity [115]. The phase transitions were shown to be implicated in the effects of the chirality transformation and mono-

chirality observed in the amino acids and proteins [119]. 
XVIII The sonication-induced chiral symmetry breaking events were observed during sol-gel phase transition [129]. 
XIX The quantum fluctuations are associated with Heisenberg's uncertainty principle. 
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was also the first who realize the fact of the chirality transfer from the 

molecular level to the level of macroscopic solid crystal [132]. The ideas 

were great, but the success was limited. Much later the empirical evidence 

of the role of the forces of nature on the chiral compounds was obtained. 

The early idea of Pasteur was supported by modern experimental capa-

bilities [133,134]. Two essential facts were observed: the effect of mag-

netic field on the molecular chirality [135] and increased enzyme stereo 

specificity in the course of an enzyme/protein evolution [136,137]. Both 

results, accompanied by the discovery of the spontaneous [138] and in-

duced chirality provided the tools to disclose the previously mysterious 

homochirality of life [139]. In particular an essential result was derived by 

Barron [140]. He demonstrated that supramolecular helices formed from 

achiral monomers have been controlled by applying the combination of 

the gravitational and rotational forces [140]. The transfer of stereochem-

ical information (in the form of chirality and helicity) was observed be-

tween chiral and achiral constituents of the molecular complexes in gen-

eral and of biological systems in particular [141-144]. The transfer of chi-

rality from protein to the cellular and embryonic level was suggested in 

several studies [145,146]. The critical role of a molecular and cellular chi-

rality as the determinants of LR asymmetric in the animal body, and func-

tions has gradually emerged [8]. The explosive advance in the study of 

asymmetric catalysis over the last four decades has dramatically altered 

the view on the biomolecular chirality dynamics [147,148]. Before the era 

of chiral catalysis, the most common characteristic of the enantiomers 

was the absence or little difference in the chemical and physical proper-

ties. At present at the majority of publications related to chiral catalysis 

we can meet the statements like “enantiomers have different properties”. 

Resent progress in the synthesis of the chiral compound associated with 

the study of the catalytic asymmetric reactions of carbonyl compounds, 

allow an understanding of the principles governing the dynamics of struc-

tural conformations in the amino acids and proteins of the living organ-

isms [149]. Molecular chirality and correspondently a chirality transfer are 

recognized as sensitive to the broad range of modulators including the 

internal, external, localized, and diffused determinants. It is notable that 

molecular chirality exhibits sensitivity to all types of the chemical binding 

including ionic, covalent, and not-covalent [58]. 

The generation of chiral imbalance in the chiral molecular systems can 

occur spontaneously, due to intrinsic instability or induced by external 

factors [102]. In accordance with this instability, the chiral self-organiza-

tion of molecular complexes is sensitive to the impact of many external 

factors including electrical (metal ions), magnetic, electromagnetic (pho-

ton), mechanical, and gravity force fields. The discovery of magnetically 

induced optical activity by Faraday was the first demonstration of the sen-

sitivity of a molecular chirality to the physical parameters of an environ-

mentXX [150]. Since then, the sensitivity of the chiral objects to the envi-

ronmental parameters has been explored at cosmological [151], molecu-

lar [152], atomic [57], and elementary particles levels [153]. Thus, it is rea-

sonable to be aware that different molecular structure can have the same 

or different physical properties depending on the nature of the physical 

effect and chemical environment.XXI In the specific case of the stereoiso-

mers interaction with an electromagnetic field, we have at last three dif-

ferent situations depending on the energy diapason (such as IR, UV and 

NMR spectra), and method used (such as the circular dichroism) [40]. The 

photons (chiral object itself) of different energy interact with the chiral 

components of the molecular complex (such as electron or proton) com-

promising its equilibrium spatial configuration. The recent discovery of 

the quantum chiral light–matter interaction offers fundamentally new 

functionalities for the charity transfer of the bio-molecular structure re-

lated to brain quantum information-processing capability [160]. The chi-

ral molecules reveal the capability of the self-organization of the helical 

superstructures. The intermolecular interactions related to the modula-

tion of chirality are the part of the supramolecular chemistry [161-165] 

and interfacial sciences [166,167]. The chiral sensing based on the con-

cept of chirality transfer is of great importance. 

 

Chain of Cirality Transfer 

Several relatively new fields of science provide the bridge between dy-

namic chirality in solid matter physics and bio-chirality. The chirality trans-

fer (or the transfer of handedness) is observed between organic and in-

organic molecular structure [168]. The central point of these studies is the 

chirality transfer in the variety of forms.XXII Among them, we can mention 

the stereo-physics of liquid crystals [126] and chiral catalysis [169]. The 

modeling macroscopic chirality emerged from the chiral molecular ele-

ments is a challenge for theory, computations, and experiments [126]. 

Numerous experimental results demonstrate the transfer of chirality 

among different length scales ranging from dimensions of the elementary 

particles to the macro-scale (the length of the axon) [124]. In particular, it 

was shown that the chirality at the molecular scale (amino, acids, proteins, 

and polysaccharides) could be transferred to the macroscopic and macro- 

level (neurofilaments and inorganic crystals) as shown in [168]. The issue 

of dimensionality in the chirality transfer effects is critical for brain infor-

mation processing in the brain and artificial intelligence devices.XXIII The 

examples of macroscopic chirality are found in the plant kingdom, animal 

kingdom and all other groups of organisms.  
 

 

 

Physical Systems 

In the quantum spin systems, the symmetry-related phase transitions 

[78,154,155] and the transfer of the stereospecific (symmetry) characters 
XXIV [97,156] are well-known phenomena. The recent advance in the exper-

imental and theoretical areas of many disciplines related to stereochem-

istry revealed the chirality-induction effects in the various inorganic ma-

terials with mono-chiral and hybrid-chirality structures including plas-

monic, semiconducting, metal oxide and silica-based compounds [170]. 

The most prominent among the field-induced chirality effects are the fol-

lowing: Coulomb (near-field, dipolar), electromagnetic, and plasmonic 

mechanisms [171]. The chirality transfer from the spin-quantum system 

of elementary particles to the atomic structure level is an essential ele-

ment of basic knowledge and serves as the necessary introduction to the 

understanding of the chemistry and biochemistry. The nuclei of atoms 

and associated electron system have an innate chirality. The chemical 

phenomena are viewed as associated with the chirality of electron system 

and nuclearXXV constituents [172]. The molecular chirality is the conse-

quence of the chirality transfer from the dynamic complex of elementary 

particles. The transfer of molecular chirality from monomers to polymeric 

structures has been widely explored and utilized [173]. The advanced field 

of chiral photon–electron /proton interaction reveals the sensitivity of chi-

ral objects to the physical environment. As a result of such sensitivity, chi-

ral photonelectron/proton interaction offers fundamentally new func-

tional opportunities for information transfer technology and info-pro-

cessing systems. In particular, the non-reciprocal single-photon devices 

allow utilizing the quantum information processing based on the super-

position of two operational states in chiral spin–photon system [160]. 

Thus, the stereo-specific effects, including the chirality transfer, are not 

the unique properties of the organic world.XXVI Quit contrary stereospe-

cific effects are the universal and fundamental character of both organic 

and inorganic materials. 

 

Biological Systems: Basic Set of the Chirality Transfer Levels 

From the physical world chiral events diversity and complexity point of 

view our primary concern is the chain of the chirality transfer in biological 

XX Following Faraday’s discovery [150], Pasteur tried to grow chiral crystals in the presence of magnetic field [157].  
XXI The NMR spectra of two stereoisomers can be identical or differ depending on the chirality of an environment (solvent). 
XXII The effect of chirality transfer is routinely used in nuclear magnetic resonance spectroscopy for the discrimination of the molecular stereoisomers absolute configurations 

[158]. 
XXIII The chirality transfer from monomers to a polymer is widely used in plastic engineering [159].  

XXIV The process is frequently referred to as the chirality transfer. 
XXV “All nuclei are innately chiral and, because electrons can penetrate nuclei, all atoms and molecules are likewise chiral” [172].  
XXVI It is notable for the sake of our review that the spiral galaxies are the objects showing preferred chirality analogous to amino acids and sugars [175]. According to a 

contemporary view, the origins of the elementary particles and chemical elements are associated with the physical events at the galactic scale [176]. 
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systems. The very essential prediction of the sequential chain of chital 

events in the organism was done long before the modern progress in bi-

ostereochemistry [174]. Taking the review of newly discovered facts as a 

basis, we will clarify the natures of elements in this chain and the hierar-

chy of these elements within the chain. Referring to the hierarchy of a 

chirality transfer, we will assume (based on the review of current publica-

tions) that it consists of several distinct levels. The basic set of these levels 

includes the transfer of following types: 

 

 From the elementary particles to the atomic orbital level 

 From the atomic orbital to the molecular levelXXVII  

 From molecular to macro- and supra-molecular level  

 From the molecular level to the cellular level 

 From the cellular level to neuronal circuits level 

 From the cellular to morphological level 

 From the morphological to cognitive level 

 From the cognitive to the behavioral level 

 

After reviewing the elements of the chiral hierarchy, we will examine 

what is currently known about the sensitivity of each of the hierarchical 

levels of chirality to the internal and external determinants. The chirality 

transfer occurs under the influence of physical and chemical determi-

nants which play a role of the “chirality directing force.” The stochastic 

fluctuations in parameters of an environment could result in the transient 

fluctuations in the relative prevalence of enantiomers [178], while long-

term fluctuations will lead to permanent effects giving a chance for am-

plification and preservation mechanisms. Several reviews provide infor-

mation about the range of chirality related events [44,45]. Finally, the de-

gree of “stereo-sensitivity” will reveal the multi-variable pathway contrib-

uting to the evolution of the brain cognitive functions. 

 

From Elementary Particles to Atomic Level 

The chirality transfer from the elementary particles to the arrangement 

of atomic orbital was considered in the previous paragraphs. The energy 

difference (parity violation) between the ground and excited states of mo-

lecular enantiomers in the presence of weak nuclear force is predicted by 

theory and proved experimentally [179,180]. 

 

From Atomic Orbitals to Molecular Level  

The wavefunctions of electron orbitals are traditionally considered to be 

the determinants of the molecular chirality [14]. Consequently, in the ste-

reochemistry, the spatial arrangement of the atomic orbital is the primary 

determinant of the chiral center's function in bio-molecules, including the 

amino acids, sugars, and phospholipids. At present, it is a common recog-

nition that the electronic orbitals of the carbon atom constitute the root 

contributing to the molecular chiralityXXVIII [181,182]. 

 

From Molecular to Macro-Molecular and Supra-molecular Level  

The alterations of brain molecular chirality, represented in particular by 

the proteins or lipids constituents, are accompanied by the changes in the 

left/right asymmetry of the synapse (cellular chirality), asymmetry in the 

regional brain morphology, and laterality of brain functions in many ex-

perimental situations. In this sense the molecular chirality, is the principal 

initiator of the origin of the life. We will review the chirality transfer events 

in the order of their natural sequence. The transfer of the symmetry pat-

terns (chirality-induced helicity or chirality-helicity transfer) from the 

amino acids to peptides [179] and proteins [181] is broadly studied. Four 

main categories of biological-macromolecules, which exhibit chirality, are 

proteins, lipids, carbohydrates, and nucleic acids [180,183].   

PROTEINS. In the human body about 100,000 different proteins intro-

duce the charity phenomenon for all the key physiological, perceptual, 

cognitive and psychological function of an organism. The chirality transfer 

from amino acids to proteins secondary and higher order structure is one 

of the most studied fields in biochemistry. The chirality of protein folding 

gained attention in condensed matter physics [14,184] and molecular bi-

ology [36,185]. The stereo-transformations of proteins are a highly dy-

namic field of science involving the most advanced analytical capabilities 

[146,186-196]. The protein’s stereo-transformations is the area of partic-

ular interest in the neuroscience due to relevance to proteins aggregation 

disorders such as Alzheimer's, Parkinson's, and Huntington's disease (AD, 

PD, HD).  

CELL MEMBRANE (PHOSPHOLIPIDS AND CHOLESTEROL). A similar 

mechanism is responsible for the transfer of molecular-level stereo-spec-

ificity (chirality) to the supra-molecular level (helicity) in cell membrane 

rafts during endocytosis [197]. The establishment of helical handedness 

can be formed at the macro-molecular level due to the stereo-ordering 

regularity of constituted chiral entities at the intra-molecular and inter-

molecular interactions [198]. The chirality transfer from the molecular to 

the supramolecular level (nanometer and micrometer scale) and the mor-

phological level was observed in the inorganic liquid crystals [115], poly-

mers [198], and bio-polymersXXIX including cellulose, sugars, proteins, 

RNA, and DNA. 

 

From Molecular to Cellular Level  

The origin of cell chirality and its role in the upstream laterality are the 

subject of many reviews [7]. The review of current studies suggests that 

“molecular chirality direct whole-cell chirality [8]. The chirality transfer 

from the molecular (cytoskeleton proteins) to the cellular level (cell wall 

and cell shape) was demonstrated in the bacterium [199,200,201, 202]. 

Cellular chirality, in a variety of its forms, is governed by crosstalk of the 

internal and external determinants.XXX Chirality at the cellular level was 

first studied mostly in ciliates or single-celled protozoans. These studies 

reveal that molecular chirality directs whole-cell chiralityXXXI [8]. At the cel-

lular level, signal transduction involves the wave of chiral transformations 

in the protein-phospholipid interactions [204-206]. 

 

From Cellular to Morphological Level  

The chirality of the biomolecules and the intrinsic cell chirality observed 

in various organisms appear to be a causal event for the left–right (LR) 

asymmetric of morphogenesis [8,130]. The multiple pathways of chirality 

transfer from the molecular cytoskeleton dynamics to the cellular behav-

ior, and to organ asymmetry were found [10]. As was mentioned above, 

the cell-shape chirality (cell chirality) is found to be driven by an intrinsic 

molecular mechanism comprising from the family of chiral cytoskeleton 

proteins [203]. In turn, the chirality transfer from the “chiral cells” to an 

organ occurs by the process of “planar cell chirality” (PCC). According  to 

the early observation of Brown and Wolpert “the spiral asymmetry, as 

seen in spiral cleavage and ciliates, involves the conversion of molecular 

asymmetry to the cellular and multicellular level” [174]. In particular, it 

includes climbing plants tendrils [207,208], flower petals [209], and shells 

[210]. In the literature, the cellular and morphological hierarchical levels 

of chirality transfer are frequently considered together. It is notable, that 

chiral morphology exhibits the prevalence of the handedness [211]. The 

coherent and quasi-independent role of the intracellular (gene expres-

sion and cytoskeleton dynamics) and extracellular (cilia) determinants in 

 

 

XXVII Due to the topic of our review, we discussed very briefly (just mentioned) the two polar elements in the chain of the chirality transfer: the physic of elementary particles 

and space-time chirality of an environment. Actually these two elements are seemingly-polar only within our “hierarchical chain”. In the nature they are inherently linked 

to each other by concept of space-time symmetry. Thus the linear sequence of chiral events, in this consideration, becomes a natural circle of the chiral transformations. 

For those who are interested in the quantum aspects of the chirality transfer we recommend to explore the “chiral effective field theory” [177].  
XXVIII Molecular level of the chirality transfer cover the broad range of molecular structures from small molecules (such the amino acids) to the large complexes including 

polymers (such as proteins) and globular molecules. 
XXIX Among the biopolymers, we will mostly concentrate on the proteins. 
XXX Support of this statement speaks to the fact that the cells isolated from developing organism undergo the symmetry transformation even in the absence of the external 

signals [8]. 
XXXI Several chiral compounds exhibit capability to block cell proliferation suggesting their relation to issue of the cancer treatment [47].  
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the initiation of the embryonic asymmetry were studied in Caenorhabdi-

tis elegans, Xenopus, snails, Drosophila,XXXII frogs, chicks, and mice [8,212]. 

The interaction of proteins and phospholipids chirality at cellular level fi-

nally result in the asymmetrical distribution of major CNS receptorsXXXIII 

between left and right cerebral cortex [213]. 

 

From the Morphological to Cognitive Level  

The chiral, spiral or helical shapes are seen in the morphology of many 

biological systems, including the spiraling of plants, and shape of the 

mammalian cochlea [18]. During animal development, chirality transfer 

repeatedly occurs at the different levels and scales of spatial organization. 

As we will see later, each lower-level (in the hierarchy of symmetry trans-

formation) generates the higher level of the morphological and functional 

specialization. The functional specialization of the nervous system at the 

molecular (intracellular) level is always under impact of the extracellular 

events. The functions on the cellular and organ (brain) level, in turn, are 

always under the acute influence of evolutionary preserved behavioral 

paradigms. The studies of the association of brain function with the 

body’s reflexive reactions and goal-oriented movement were initiated by 

works of Pavlov in relation to the conditioned and unconditioned reflexes 

[214]. The ideas of Pavlov resonate with the earliest thoughts of Plate and 

Aristotle regarding the succession of memory events and modern theo-

ries of cognitive association. Brain asymmetry at the structural level be-

gins to be apparent in the fetal brain in humans and nonhuman primates 

[215]. Brain laterality at the functional level is considered to be a result of 

morphological laterality [216]. The higher-order cognitive functions are 

associated with the spatially distributed activity of cerebral cortex. The 

anatomical asymmetry of the human cerebral cortex is exhibiting a three-

partial differentiation. First-the torque {right frontal and left occipital ar-

eas are more prominent in size} [217]. Second-the leftward volumetric 

dominance in language-related areas [218,219]. Third-the left-right asym-

metry in cortical thickness (right biased in frontal and left biased in parie-

tal regions [220-222]. 

The discrimination between sleep and evoke brain activity with fMRI 

and EEG techniques demonstrates objective (and now trivial) link of the 

quantum dynamics of proton and electron with the faculties of space per-

ception,XXXIV and consciousness [223,224]. The chirality transfer from the 

morphological level to functional brain laterality is considered in the 

plenty of the articles, reviews, and monographs [44,224-226]. 

 

From Cognitive to Behavioral Level  

Chiral information is used for social communication in the variety of spe-

cies from insectXXXV to humanXXXVI {face expression and perception} 

[228,229]. Diverse explanations have been proposed for the origin of the 

behavioral laterality including space constraints [230], as well as genetic, 

and ecological determinants. The link between the molecular, functional, 

and behavioral laterality is the focus of many studies. It is known that lat-

eralized expression of the neuro-receptors serves as internal positional 

markers (compass) to distinguish the left and right hemisphere. Long 

time ego these markers were hypothesized to be necessary during onto-

genesis for bilaterally-symmetrical brain formation and performance the 

hemisphere-specific perceptual and cognitive functions [231]. In particu-

lar, it was shown that the circle rotation of animal, which is mediated by 

several neurotransmitting systems, significantly contributed by an asym-

metric expression of the hypothalamic neurohormones (such as somato-

statin, substance P, and others [232]. Thus behavioral studies support the 

idea of a hierarchical chain of the chirality transfer. 

 

Biological Transport, Information Processing, and Cognitive Sys-

tems 

It is reasonable to mention here that the chirality transfer is relevant to 

three essential issues associated with space topology: the biological 

transport, information processing, and principle of cognition. A wide 

range of the coordinated motions, including the locomotion of organisms, 

spatial displacements at morphological (muscle fibers), cellular (flagella, 

cilia, synaptic spine) and molecular levels (protein fold, lipid chirality) are 

based on the principles of the chiral dynamics [91]. It has become clear 

that the evolutionary design of biological molecular motors acts upon the 

chirality transfer from the amino acids to the helical chirality of proteins. 

The biological molecular transport systems consist of two major parts: 

the cytoskeleton and motor proteins [233,234]. The functions of intracel-

lular motor-proteins inspired the engineering molecular motors [235,236]. 

The advance in the design of artificial molecular motors promotes the un-

derstanding of the mechanism of intracellular transport [112,202,237, 

238]. Thus not only the lower level biological features like the molecular 

transport, neuronal signaling, but also the higher level features such as 

sensory perception, brain information processing, and cognitive func-

tions in general are related to the modality of chirality transfers. 

 

Conclusion 

Noether's Theorem 

Noether's theorem states that each conservation lawXXXVII is associated 

with symmetry in the underlying physics [239]. The universal role of sym-

metry principles in the stereochemical configuration traditionally dis-

cussed in relations to the fundumental theorems of Noether, Ruch, and 

Gödel (240,241). From the platform of modern science, each of the con-

servation and violation laws is fundamentally associated with the preser-

vation or alteration of the symmetry-related parameters. These universal 

laws are not only relevant to both nonbiological and biological objects but 

also are the fundamental determinants of an interaction between them. 

The symmetry patterns are persistently transferred between any combi-

nations of the objects of similar or different nature.       

 

Our Hypothesis  

Utilizing the application of universal space time topology principles to the 

biological world, our hypothesisXXXVIII state that the link between molecu-

lar chirality and laterality of the cognitive function is based on the univer-

sal law of symmetry. Refraining known sentence “space and time are the 

primary forms of existence” we can say that the dynamic symmetry is the 

form of existence for the entire variety of the biological objects. 

Biological molecules reveal the chirality (handedness) in a variety of 

fashions many of which are critical for the healthy functions of human 

body, brain, and mind. The observation of the sign-alternating hierarchies 

for DNA and proteins contribute to the structure-function link in biochem-

istry, neuroscience, and psychology [242]. The striking similarity in the chi-

rality-related effects within a broad class of molecular, cellular, and mor-

phological structures inspired researchers in many fields of stereochem-

istry and neuroscience. The advance in the current results reveals the fun-

damental significance of molecular chirality in the broad range of inter-

related disciplines including an intracellular transport, neuro-develop-

ment, sensory perception, motor behavior, brain cognitive functions, hu-

man psychology, and psychiatry. The helical structures of the proteins are 

known to be the consequence of amino acid chirality. The helicity of pro-

 

XXXII In Drosophila, intrinsic cell chirality is observed in various left–right (LR) asymmetric tissues, and appears to be responsible for their LR asymmetric morphogenesis. It is 

notable that the cell chirality can drive the LR asymmetric development of individual organs without establishing the LR axis of the whole embryo [8]. 
XXXIII The muscarinic acetylcholine receptors (mAChR), the prevalent receptors in the central nervous system, are asymmetrically distributed between left and right cerebral 

cortex with the right-side dominance [213]. 
XXXIV In Kant’s view, space and time are a priory forms of sensibility, providing two windows’ for empirical intuition. 
XXXV The insects and many other animals use molecular chirality for olfactory perception. Insects, which use chiral pheromones, typically produce and respond to either a single 

stereoisomer or to species-specific blend of only some of the possible stereoisomers [227]. 
XXXVI The face expression and perception, which play a significant role in human social communication, both are the chirality related functions. 
XXXVII Conservation Laws: Conservation of the Linear Momentum, Angular Momentum, and Energy. 
XXXVIII Meaning that the hypothesis is based on the universal nature of Noether’s theorem and is generated by the review of contemporary experimental facts and theoretical 

models. 
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teins, in turn, provides an opportunity for chiral biological macromolecu-

lar systems with higher hierarchical levels of symmetry and yet unknown 

functions [46,242,243]. The hierarchy in the chain of the chirality transfer, 

evident particularly from the current review, possesses several not trivial 

features. Each of the consequently following hierarchical levels is contrib-

uted to from the cumulative power of all lower and higher levels. Each 

level has its own quasi-independent internal and external determinants. 

The majority of the external determinants (including environmental) ex-

hibit a chiral nature. As such, the chirality of external determinants is a 

critical factor in the evolution and development of the organism. The chi-

rality is naturally imposed to the brain structure and function from the 

two seemingly opposite but fundamentally linked to each other sides: the 

nature of bio-molecular structures and from the geometry of the environ-

ment. The fundamental nature of the chirality transfer should be consid-

ered in the experimental design strategy in neuroscience, cognitive sci-

ence, psychology, and pharmacology. In particular, the molecular chirality 

is a sensitive indicator of both: the proper protein folding and pathologi-

cal aggregation. Accordingly, the chirality patterns (raging from molecular 

chirality to the laterality of brain function) should be considered as a new 

generation of the biomarkers in the spectrum of the disease conditions 

including neurodegenerative and psychiatric disorders [22,244] 

Several recently published essential papers provide the broad review 

of the previous and current hypothesis of a perceptual and cognitive de-

velopment in health [245], and pathology [246]. Referring to the limited 

progress in the current models, and the low efficiency of drug treatment, 

authors frequently appeal to the necessity of a new approach in the re-

search of the cognitive functions mechanism. Notably that none of the 

above-mentioned review are focused on the issues of stereochemistry, 

and brain asymmetry which are a central point for the study of links be-

tween protein folding and brain functions. [247-249]. Even the reviews 

devoted to structure, function, and assembly of the visual system (which 

is lateralized and well-studied as one of the most asymmetrical) do not 

focused on the molecular substrate of sensory functions. The explosive 

attention to protein-brain topology demonstrated in this year’s publica-

tions can be considered as a response to the “necessity calls’’ [250,245,251, 

252].  

Our review aims to contribute toward attention to the unifying direc-

tion for the studies of development, function, and decline of human per-

ception, cognitive function, and action [252,253]. 
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